
BAPC 2024
The 2024 Benelux Algorithm Programming Contest

Problems
A “Aaawww...” or “Aaayyy!!!”
B Buggy Blinkers
C Concurrent Contests
D Disgruntled Diner
E Extraterrestrial Exploration
F Failing Factory
G Grocery Greed
H Horse Habitat
I Interrail Pass
J Jumbled Scoreboards
K Karaoke Compression
L Levelling Locks
M Museum Visit



Copyright © 2024 by The BAPC 2024 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/


Problem A: “Aaawww...” or “Aaayyy!!!” 3

A “Aaawww...” or “Aaayyy!!!” Time limit: 2s

The audience going “Aaawww. . . ”.
© VIA FotoCollectief on Flickr,

used with permission

You are a hardcore supporter for one of the teams at the Benelux
Algorithm Programming Contest (BAPC). Unfortunately, the
staff found you entering the contest area and popping other
teams’ balloons. As a result, you were kicked out of the building
and you will not be allowed back in until the contest is over. As
a hardcore supporter, you would not want to miss the award
ceremony and not know the final rank of your favourite team
while everyone inside already knows! Luckily, you know a way
to follow the award ceremony from outside the building.

One hour before the end of the contest, the scoreboard freezes. Since you can access the
frozen scoreboard online, you know the rank of each team and for which problems they have
accepted, rejected or pending submissions. During the award ceremony, the results of all
pending submissions are revealed, starting with the leftmost pending submission of the lowest
ranking team with a pending submission. After every reveal, the scoreboard is updated and
the next pending submission is chosen in the same way.

The BAPC is known for its great audience participation during the award ceremony. When
the result of a pending submission is about to be revealed, the audience chants “Ooohhh. . . ”
in anticipation. When the submission is rejected, the audience utters a sad “Aaawww. . . ”.
When the submission is accepted, the crowd goes wild with an “Aaayyy!!!”. If an accepted
submission causes a team to rise in the ranking, this chant goes on for longer. Specifically, an
extra ‘y’ is added for each team they pass. For example, if they pass five teams, the audience
will yell “Aaayyyyyyyy!!!” (with eight ‘y’s). While you cannot make out any words of the
announcer, you can clearly hear the enthusiastic audience from outside. You want to use this
to determine the final rank of your favourite team.

Input

The input consists of:

• One line with three integers n, m, and r (2 ≤ n ≤ 100, 1 ≤ m ≤ 100, 1 ≤ r ≤ n), the
number of teams, the number of problems, and the rank of your favourite team in the
frozen scoreboard.

• n lines with m characters, each character being either ‘A’, ‘R’, ‘P’, or ‘N’, indicating that
a team’s submission is either accepted, rejected, pending, or nothing. The teams are
sorted by their rank in the frozen scoreboard, i.e. descending by number of accepted
submissions in the frozen scoreboard, and further tie-breaking rules guarantee that all
teams have a distinct rank.

• For each pending submission, one line with two strings, containing the audience chant
at the reveal of the pending submission, in chronological order. The first string is
“Ooohhh...” and the second string is either “Aaawww...” or “Aaayyy!!!”, with an
additional ‘y’ for each team that is passed when rising in the ranking.

https://www.flickr.com/photos/viafotocollectief/53294901280/in/album-72177720312286426/


4 Problem A: “Aaawww...” or “Aaayyy!!!”

Output

Output the final rank of your favourite team.

Sample Input 1 Sample Output 1
2 3 2
AAP
APR
Ooohhh... Aaayyyy!!!
Ooohhh... Aaawww...

1

Sample Input 2 Sample Output 2
2 3 2
AAP
APR
Ooohhh... Aaayyyy!!!
Ooohhh... Aaayyyy!!!

2

Sample Input 3 Sample Output 3
4 4 3
AAPP
PNAA
PPAA
NAPN
Ooohhh... Aaayyyy!!!
Ooohhh... Aaayyyyyy!!!
Ooohhh... Aaawww...
Ooohhh... Aaayyy!!!
Ooohhh... Aaayyyy!!!
Ooohhh... Aaayyyy!!!

1



Problem B: Buggy Blinkers 5

B Buggy Blinkers Time limit: 4s

A car indicating to turn left.
CC BY-SA 3.0 by

Scheinwerfermann on
Wikimedia Commons

Recently, your car underwent a software update. Now, if you use the
blinkers too much, the car shuts down, reporting a “buffer overflow”,
whatever that means! On the bright side, you are now welcome at
the Broken-down Automobile Preservation Convention (BAPC).

You found out late, so you have to drive there as quickly as possible!
Still, of course, you have to obey all traffic rules. At each intersection,
you should follow these rules, regardless of whether an intersection
has roads in all directions or not:

• When turning left (or right) at an intersection, the left (or
right) blinker must be on.

• When driving straight ahead, the blinkers must be off.
• U-turns are not allowed, i.e. you are not allowed to turn back

the way you came.

To play it safe with your blinkers, you decide you are going to activate them at most k times.
Luckily, you can still deactivate them at any time. This seems rather limiting, but you
make one shrewd observation: as long as you keep your blinkers on (they do not turn off
automatically), you can keep turning in the same direction.

The road network consists of intersections with roads between them. Roads always start and
end in one of the four cardinal directions: north, east, south, or west. Furthermore, they never
start and end at the same intersection. As an example, consider sample cases 1 through 3,
visualized in Figure B.1 (next page). These samples only differ in their value of k.

To simplify navigation, you assume that each road can be traversed in the same amount of
time, i.e. each road is considered to be of length 1. Find the shortest route from your current
location to the BAPC, ensuring that you do not activate the blinkers more than k times. From
your current location, you can drive in any direction without using your blinkers.

Input

The input consists of:

• One line with two integers n and k (1 ≤ n ≤ 5000, 0 ≤ k ≤ 20), the number of
intersections and the number of times the blinkers can be activated.

• n lines, the ith of which contains four integers vn
i , ve

i , vs
i , and vw

i (0 ≤ vn
i , ve

i , vs
i , vw

i ≤ n),
the intersections that can be reached by taking the north, east, south, and west road
from intersection i, or 0 to indicate that the road does not exist.

You start at intersection 1, and the BAPC is located at intersection n. Each intersection i

has at most one road to each other intersection j. If this road exists, then intersection j has
exactly one road to intersection i as well.

https://commons.wikimedia.org/wiki/File:Turnsignals_On.jpg


6 Problem B: Buggy Blinkers

3 4 5

2
1

Figure B.1: Visualization of the first, second, and third sample input.

Output

If it is possible to drive from intersection 1 to n using the blinkers at most k times, output the
length of the shortest such route. Otherwise, output “impossible”.

Sample Input 1 Sample Output 1
5 2
0 2 0 0
4 0 3 1
0 4 2 0
0 5 2 3
0 0 0 4

3

Sample Input 2 Sample Output 2
5 1
0 2 0 0
4 0 3 1
0 4 2 0
0 5 2 3
0 0 0 4

4

Sample Input 3 Sample Output 3
5 0
0 2 0 0
4 0 3 1
0 4 2 0
0 5 2 3
0 0 0 4

impossible

Sample Input 4 Sample Output 4
5 2
0 2 0 0
4 0 3 1
0 4 2 0
0 0 2 3
0 0 0 0

impossible



Problem C: Concurrent Contests 7

C Concurrent Contests Time limit: 4s

Prizes for all the different contests you
can win. CC BY-SA 4.0 by JFS-Chatt

on Wikimedia Commons

Because of some scheduling issues, there are m different
programming contests scheduled on the same day, at the same
time. There are n people who would like to participate in these
contests, but because all contests happen simultaneously, each
participant can only compete in one contest. Everyone wants
to choose the contest in which to participate such that their
expected winnings are maximized.

Every contest has a single cash prize for the winner (no-one else
gets a prize). Furthermore, every participant has a skill level,
which determines their winning probability. If the sum of skill
levels over all participants in a contest is t, then the winning probability in this contest of a
participant with skill level s is s

t .

Find a distribution of the participants over the contests, such that it is impossible for any
person to switch to a different contest and increase their expected winnings. It is guaranteed
that such a distribution exists.

Input

The input consists of:

• One line with two integers n and m (1 ≤ n ≤ 2 · 105, 1 ≤ m ≤ 100), the number of
contestants and the number of contests.

• One line with n integers s (1 ≤ s ≤ 109), the skill levels of the contestants.

• One line with m integers p (1 ≤ p ≤ 109), the prizes for the winners of the contests.

The sum of all skill levels is at most 109.

Output

For each contest, output the number of contestants that should participate in this contest,
followed by the 1-based indices of the contestants that should participate in this contest.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
6 3
2 5 10 3 7 1
100 50 75

4 4 2 6 1
1 5
1 3

https://commons.wikimedia.org/wiki/File:Tyner_Middle_Academy_Trophies.JPG


8 Problem C: Concurrent Contests

Sample Input 2 Sample Output 2
3 2
9 10 8
10 100

0
3 2 3 1



Problem D: Disgruntled Diner 9

D Disgruntled Diner Time limit: 2s

Tickets allow Diana to oversee kitchen
operations. Unsplash Licence by

Daniel Bradley on Unsplash

Diana is head chef at the Batavian Authentic Prestigious Cuisine.
All orders are logged to a central computer, but to organize the
kitchen, each ordered item is also printed on a separate ticket.
On the back of each ticket, Diana writes the corresponding table
number, so servers can easily check where they need to deliver
the food. When a ticket is completed, Diana pins it to a board.
Of course, there could be duplicate tickets, since a table may
order the same item multiple times.

Halfway through service, a disgruntled diner complains: “We
have been waiting for hours, but so far we were only served
tomato soup! Could you please hurry up?” Diana must address this immediately, since the
reputation of the restaurant is at stake! However, in the past, some customers have been
dishonest in order to demand expedited service. So, before Diana instructs the kitchen staff,
the complaint must be verified.

Since the board is always up-to-date, verification is a matter of checking the relevant tickets.
Let t and m be the table number and menu item that describe the complaint, respectively.
Diana seeks to verify the following claim: “All pinned-up tickets for table t correspond to
menu item m.” In particular, if there are no completed tickets for table t, Diana considers the
claim to be true – the customer may have misspoken, but they surely deserve extra attention!

Unfortunately, on the board, only one side of each ticket is visible (either the menu item
or table number) and Diana does not have time to flip hundreds of tickets. However, by
cross-referencing with the central computer, it may be possible to safely ignore certain tickets.
Help Diana determine the minimum set of pinned-up tickets that need to be flipped. Or can
you (dis)prove the claim without flipping any tickets? You must decide which tickets should
be flipped before Diana starts doing so – she is too strained to make deductions on the fly.

Input

The input consists of:

• One line with two integers n and k (1 ≤ k ≤ n ≤ 500), the number of orders in the
computer and the number of pinned-up tickets.

• One line with n strings representing the orders in the computer, each string consisting of
one English uppercase letter (the menu item, A-Z) and one digit (the table number, 0-9).

• One line with k characters representing the pinned-up tickets, each character being either
an English uppercase letter or a digit.

• One line with a digit t (0-9) and an English uppercase letter m (A-Z), specifying the
claim: “All pinned-up tickets for table t correspond to menu item m.”

The pinned-up tickets are guaranteed to correspond to (a subset of) the orders in the computer.

https://unsplash.com/photos/man-holding-white-menu-y_WDEY9e6mA


10 Problem D: Disgruntled Diner

Output

If, without flipping any tickets, the claim is provably true or false, output “true” or “false”,
respectively. Otherwise, output the minimum number of pinned-up tickets that need to be
flipped, followed by their 1-based indices, in any order.

Sample Input 1 Sample Output 1
6 4
A1 A2 B1 B2 C1 C2
A B 1 2
1 A

2
3 2

Sample Input 2 Sample Output 2
5 4
A1 B1 C2 C1 A2
2 A B 1
1 A

false

Sample Input 3 Sample Output 3
4 4
Z0 Z0 F9 F9
Z 0 9 9
4 F

true



Problem E: Extraterrestrial Exploration 11

E Extraterrestrial Exploration Time limit: 1s

The inspiration for your spaceship.
CC BY-SA 3.0 by Edwtie on

Wikimedia Commons

After years of planning and construction, you finally succeeded
in making your own spacecraft! Immediately hopping aboard,
you take the spaceship on a maiden voyage to the Big
Anthropomorphic Pig Constellation. After a couple of years,
you reach the constellation and land on the nearest planet to
take some pictures and hopefully score some souvenirs. While
haggling with a local souvenir seller using the built-in translator
of your spacecraft, you are suddenly notified that the craft is
low on fuel! Your extensive use of the translator has drained
more fuel than expected, and you cannot get back to Earth.
Frantically, you look for a refuelling station. Luckily, a local
points you to a shady store, strikingly similar to the petrol
stations you know from home.

While the outside of the refuelling station may look similar to those on Earth, the inside is
completely different. On a long shelf are a number of fuel canisters, with strange symbols on
the side. From your research on rocket fuel, you deduce that these symbols probably denote
the oxydilation level of the fuel in the canister. None of the rocket fuels burn on their own.
Instead, combining two rocket fuels with oxydilation levels ox and oy yields a fuel with burn
time

√
|ox − oy|. You can afford to buy three full canisters, and the burn time of rocket fuel is

additive, so that combining rocket fuels with oxydilation levels ox, oy and oz results in a total
burn time of √

|ox − oy| +
√

|oy − oz| +
√

|oz − ox|.

You can only decode the symbols denoting the oxydilation levels with the translator of your
spacecraft. Unfortunately, due to the low fuel levels of the spacecraft, you can only use your
translator for 50 items, before the fuel fully runs out. Luckily, you know that rocket fuel is
always stored in non-decreasing order of oxydilation levels. Can you figure out which three
canisters of rocket fuel to buy to maximize total burn time?

Interaction

This is an interactive problem. Your submission will be run against an interactor, which
reads from the standard output of your submission and writes to the standard input of your
submission. This interaction needs to follow a specific protocol:

The interactor first sends one line with an integer n (3 ≤ n ≤ 2 · 105), the number of types of
rocket fuel.

Then, your program should make at most 50 queries to find the optimal three fuel canisters.
Each query is made by printing one line of the form “? i” (1 ≤ i ≤ n). The interactor will
respond with one line with an integer oi (|oi| ≤ 106), the oxydilation value of the fuel in the
ith canister.

https://commons.wikimedia.org/wiki/File:Ijsraket.png


12 Problem E: Extraterrestrial Exploration

When you have determined the optimal three distinct canisters x, y, and z (1 ≤ x, y, z ≤ n,
x ̸= y, x ̸= z, y ̸= z), print one line of the form “! x y z”, after which the interaction will
stop. Printing the answer does not count as a query.

If there are multiple valid solutions, you may output any one of them.

The interactor is not adaptive: the oxydilation levels of the fuel canisters are fixed up front,
and do not depend on your queries.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Using more than 50 queries will result in a wrong answer.

Read Sample Interaction 1 Write
4

? 1

1

? 3

3

? 4

3

! 1 2 3

Read Sample Interaction 2 Write
6

? 1

-5

? 6

5

? 2

-3

? 5

3

? 3

-1

? 4

1

! 4 6 1



Problem F: Failing Factory 13

F Failing Factory Time limit: 4s

All steps in your gigafactory working
together in harmony (until something

fails, of course). CC BY 2.0 by
Steve Jurvetson on Flickr

The gigafactory for your new range of Battery-Assisted Postal
Cars is finally up and running. This manufacturing plant is
a highly complex facility, consisting of many individual steps,
where the parts of each car are milled, stamped, welded, soldered,
screwed, glued, assembled, tested, detailed, layered, painted, and
cleaned. Every step is optimized to the tiniest detail, making
them very complicated.

As you are preparing for a visit from your main investor, alarm
bells start going off. One of the steps failed, causing a cascade
of failures across the factory! After hurriedly resolving the failures, panic creeps up to you:
what if a failure happens during the visit of the investor?

Currently, all processes in the factory are working, but your engineers determined that each of
them has some independent probability of failing before the visit. As the visit is soon, there
will be no time for any repairs, and as soon as a step fails, this will quickly halt all dependent
steps as well.

Thus, you decide to show only a single processing step of your factory, and specifically, the one
with the smallest probability of failing. As an example, consider the second sample case. The
probability that step 1 fails is 0.72, but step 2 is slightly more stable with a failure probability
of 0.6. Thus, you show step 2 to your investor, with a probability of 0.4 that it will not fail.

Input

The input consists of:

• One line with two integers n and m (1 ≤ n ≤ 105, 0 ≤ m ≤ 105), the number of steps
and the number of dependencies between steps.

• One line with n floating point numbers p (0 ≤ p ≤ 1), the individual failure probability
of each step. Each probability is given in decimal form1 with exactly three digits after
the decimal point.

• m lines, each with two integers a and b (1 ≤ a, b ≤ n, a ̸= b), indicating that step a

depends on step b: failure of step b will cause failure of step a.
A direct dependency of one step on another occurs at most once.
Cyclic dependencies are allowed.

Output

For the step with the smallest probability of failing, output the probability that it will not fail.

Your answer should have an absolute error of at most 10−200 or a relative error of at most 10−6.
1When a floating-point number is written in decimal form, it is not in scientific notation.

https://www.flickr.com/photos/44124348109@N01/6858583426


14 Problem F: Failing Factory

Sample Input 1 Sample Output 1
2 2
0.600 0.300
1 2
2 1

0.28

Sample Input 2 Sample Output 2
2 1
0.300 0.600
1 2

0.4

Sample Input 3 Sample Output 3
4 3
0.999 0.994 0.998 0.996
1 2
2 3
3 4

0.004

Sample Input 4 Sample Output 4
4 4
0.999 0.994 0.998 0.996
1 2
2 3
3 4
4 1

4.8e-11



Problem G: Grocery Greed 15

G Grocery Greed Time limit: 2s

Paying by card for only the milk.
CC PDM 1.0 by U.S. Department

of Agriculture on Flickr

Recently, you have acquired the newest book in the self-help
category: “Becoming A Professional Consumer”, containing a
wide variety of tips on how to buy as much as possible, while
paying as little as possible. One of the things that you already
discovered while reading the book is that you have been paying
too much for your groceries all your life!

This works as follows: in a supermarket, you can decide to pay
with card or with cash. If you pay with cash, the amount you
have to pay gets rounded to the nearest multiple of €0.05, and
if you pay with card, it does not. So, depending on your groceries, it can be cheaper if you
pay with the right method! You can minimize your spendings even further by splitting your
groceries into multiple groups, and paying separately for every group.

You have already decided on a list of the things that you are going to buy, and you know their
prices. What is the cheapest way to buy all these groceries?

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 2 · 105), the number of items you want to buy.

• One line with n floating point numbers p (0.05 ≤ p ≤ 100.00), the prices of the items in
euros. Each price is given in decimal form1 with exactly two decimal places.

Output

Output the minimal total amount of money you need to buy all the groceries, in euros. Your
answer should have exactly two decimal places.

Sample Input 1 Sample Output 1
3
0.59 5.21 3.10

8.89

Sample Input 2 Sample Output 2
5
20.43 1.11 6.47 19.99 3.75

51.70

Sample Input 3 Sample Output 3
2
0.05 0.14

0.19

1When a floating-point number is written in decimal form, it is not in scientific notation.

https://www.flickr.com/photos/41284017@N08/53484141497


16 Problem G: Grocery Greed

Sample Input 4 Sample Output 4
4
1.00 3.00 5.00 2.00

11.00

Sample Input 5 Sample Output 5
3
68.79 61.18 0.58

130.53



Problem H: Horse Habitat 17

H Horse Habitat Time limit: 25s

Harold hopes he herds honoured
horses, just like ome Loeks.

CC BY-SA 3.0 by Bouwe Brouwer
on Wikimedia Commons

Harold has inherited a huge habitat with hundreds of horses!
He wants to train a handful of horses for the Bareback Arizona
Phoenix Cowboys, which is a half-yearly happening honouring
Arizonan horse riding history. Hence, Harold signed his horses
up for the Hurdle Hopping event and he has requested your help
handling the training program.

Hurdle Hopping courses have many possible layouts, each
requiring a different rectangular area. However, not all of the
land in the habitat is suitable for courses. Horses, moreover,
need to train courses on multiple different grounds in order to
learn to adapt to possible circumstances. Handling the training
program, it is thus relevant that courses can be rebuilt in many
different locations.

Handed to you is a map showing the habitat as a grid of unit
squares with each square indicating whether the land is suitable
for courses or not. Help Harold by answering a list of questions, each question asking the total
number of possible locations in the habitat for a Hurdle Hopping course with a particular size.

Input

The input consists of:

• One line with three integers r, c, and q (1 ≤ r, c ≤ 9 · 106, r · c ≤ 9 · 106, 1 ≤ q ≤ 105),
the number of rows and columns of the grid, and the number of questions.

• r lines with c characters, each character being either ‘.’ if the corresponding square
indicates land suitable for courses or ‘#’ otherwise.

• q lines, each with two integers h and w (1 ≤ h ≤ r, 1 ≤ w ≤ c), indicating a question
from Harold about the number of Hurdle Hopping courses with height h (number of
rows in the grid) and width w (number of columns in the grid).

Output

For each of the q questions, output the number of possible locations for a grid-aligned Hurdle
Hopping course of the requested height h (number of rows in the grid) and width w (number
of columns in the grid).

Sample Input 1 Sample Output 1
1 7 1
#....#.
1 2

3

https://commons.wikimedia.org/wiki/File:Groningen,_Peerd_van_ome_Loeks.jpg


18 Problem H: Horse Habitat

Sample Input 2 Sample Output 2
3 3 6
..#
#..
...
1 1
1 2
2 1
3 1
2 2
3 3

7
4
3
1
1
0

Sample Input 3 Sample Output 3
2 3 6
...
...
1 1
1 2
2 1
2 2
1 3
2 3

6
4
3
2
2
1

Sample Input 4 Sample Output 4
3 5 5
.....
..#..
.....
2 2
1 1
1 5
3 1
1 3

4
14
2
4
6



Problem I: Interrail Pass 19

I Interrail Pass Time limit: 2s

Definition of a travel day from interrail.eu.
© Eurail B.V., used non-commercially

Interrail passes are the fun and cheap way to see more
of Europe, especially if you combine your train trip with
Businesslike And Penny-saving Computation! In particular,
you would like to find the cheapest way to pay for your
planned travels. You plan to take the train on n travel
days, that are not necessarily consecutive. The individual
fare is different for every day, and perhaps you can save
money by buying some interrail passes.

There are k different types of interrail passes with varying
costs. Each type of interrail pass can be obtained multiple times. An interrail pass is active for
a period of p consecutive days, that starts on a day of your choice. The interrail pass covers
the first d travel days during this period, which do not have to be consecutive. Note that an
active interrail pass cannot be “paused”: a day of travel counts towards the day count of each
active pass, even when you pay the individual fare that day.

As an example, consider the fourth sample input, visualized in Figure I.1. It is definitely
cheaper to buy interrail passes than to pay 4 individual fares. The cheapest solution is to buy
two interrail passes of the first type, rather than one interrail pass of the second type.

Figure I.1: Visualization of the types of interrail passes for the fourth sample input in a webshop.
The first one can be activated for a period of 5 days, and can be used for 3 days within that period.
The second one has a period of 30 days, and can be used for 5 days during that period.

Input

The input consists of:

• One line with two integers n and k (1 ≤ n ≤ 10 000, 0 ≤ k ≤ 100), the number of
planned travel days, and the number of types of interrail passes available.

• n lines, each with two integers t and f (0 ≤ t ≤ 106, 1 ≤ f ≤ 105), the travel day and
the individual fare for that day. The n travel days are distinct and given in increasing
order.

• k lines, each with three integers p, d, and c (1 ≤ p ≤ 106, 1 ≤ d ≤ p, 1 ≤ c ≤ 105),
indicating a type of interrail pass that is valid for a period of p days, covers the first
d travel days in that period, and costs c.

https://www.interrail.eu/en/support/interested-in-interrailing/what-is-a-travel-day


20 Problem I: Interrail Pass

Output

Output the minimum amount you need to spend to cover all your planned travels.

Sample Input 1 Sample Output 1
2 1
0 10
1 10
2 2 15

15

Sample Input 2 Sample Output 2
2 1
0 10
2 10
2 2 15

20

Sample Input 3 Sample Output 3
3 1
0 10
1 10
2 10
5 2 15

25

Sample Input 4 Sample Output 4
4 2
3 80
5 90
24 70
26 60
5 3 100
30 5 212

200

Sample Input 5 Sample Output 5
4 1
42 9
43 2
44 9
45 9
4 3 20

29



Problem J: Jumbled Scoreboards 21

J Jumbled Scoreboards Time limit: 1s

One of the pictures that you received
for the first sample input. CC BY 2.0

by Adam Baker on Flickr, modified

You were so hyped to attend the final game of the Ball And
Paddle Competition, where the two best teams in the world
compete to paddle as many balls into the opponent’s goal as
possible. But alas, you fell ill, and cannot join your friends.
Luckily, your friends took lots of pictures during the match, and
after the match concluded, they sent you all the pictures that
they have. Because the messaging app uploads and downloads
the pictures in parallel, you are wondering whether you received
them in chronological order. It looks like the scoreboards in
each picture are unique, and knowing that the score of a team can only increase over time, you
should be able to figure this out. Feeling too sick to check the order of the pictures manually,
you decide to write a program that checks temporal consistency based on the scoreboards that
are in the picture.

Given a list of intermediate scores from the match, determine whether the scores are in
chronological order.

Input

The input consists of:

• One line with an integer n (1 ≤ n ≤ 100), the number of pictures you received.

• n lines, each with two integers a and b (0 ≤ a, b ≤ 100), the scores of the two teams in
one of the pictures.

Every pair of scores (a, b) in the input is unique.

The order of the scores in the input is the order in which you received the pictures.

Output

Output “yes” if the scores are in chronological order, or “no” if they are not.

Sample Input 1 Sample Output 1
4
1 0
2 0
4 0
4 1

yes

https://www.flickr.com/photos/atbaker/288807033/


22 Problem J: Jumbled Scoreboards

Sample Input 2 Sample Output 2
3
0 0
1 0
0 2

no

Sample Input 3 Sample Output 3
5
1 2
0 0
4 3
2 3
5 5

no



Problem K: Karaoke Compression 23

K Karaoke Compression Time limit: 10s

Flowcharts are another compression method that
you have considered. CC BY-NC 2.5 by

Randall Munroe on xkcd.com

Next week, you will be hosting the Biannual Acoustic
Popsong Convention. Of course, this convention also
needs to include a karaoke night, featuring all your
favourite acoustic pop songs! To impress all attendees,
you have decided to prepare by learning the lyrics of
all the songs by heart. But there is a problem: these
lyrics are very long, so you will not have enough time left to learn all of this! However, you
have noticed that a lot of the songs contain quite some repetitions. This gives you the idea of
first compressing the lyrics, and then only learning the compressed version.

The compression scheme you will use works as follows. Let s be the string to compress. You
select exactly one nonempty substring t of the lyrics, and replace as many occurrences of t in
s as possible by a new character that did not occur in s before. Call the result of this s′. Now
you only need to remember the substring t and the compressed string s′. You would like to
know the minimal total length of these two strings, if you compress the lyrics in this manner.

As an example, consider the first sample case. In this case, you want to compress the lyrics
“nanananananananabatman”. If you replace the substring “na” by the character “X”, the
compressed string becomes “XXXXXXXXbatman”. The total length of the substring and
compressed string in this case is 2 + 14 = 16. However, if you instead choose to replace
the substring “nana”, then the compressed string is “XXXXbatman” and the total length is
4 + 10 = 14, which is optimal.

Input

The input consists of:

• One line with a string s (1 ≤ |s| ≤ 5000), the lyrics to compress.
The string only consists of English lowercase letters (a-z).

Output

Output the minimal total length of the replaced substring and the compressed string.

Sample Input 1 Sample Output 1
nanananananananabatman 14

Sample Input 2 Sample Output 2
abcabd 6

Sample Input 3 Sample Output 3
nocompression 14

https://xkcd.com/851_make_it_better/


This page is intentionally left blank.



Problem L: Levelling Locks 25

L Levelling Locks Time limit: 3s

The ship carrying your favourite
snack, eierballen, just moments before

the power outage. Generated using
Microsoft Copilot Designer

Oh, snap! A recent power outage not only left Groningen in
darkness, but even worse, it caused a complete system failure
of the city’s historic and obsolete lock system, closing off the
waterways. The lock consists of a series of identical chambers,
with a gate between each pair of adjacent chambers that can
be opened or closed. The system failure, however, caused all
the gates to remain closed, blocking the water flow between the
chambers. Normally, this would not bother you, but you are
eagerly awaiting a shipment of your favourite snack: eierballen.

Fortunately, Lotte, a professional scuba diver, is up to the task
of repairing the old lock. She devised a plan that is as simple
as it is daring:

Lotte is currently aboard a helicopter en route to the lock. Upon
arrival, she will dive into the cold water of a chamber of her choosing and start opening gates
manually. By swimming in the already connected chambers, she can open the next closed
gate to either her left or her right, forcing the water levels to equalize between the connected
chambers.

However, swimming in deep waters is dangerous and should be avoided where possible. The
danger of her mission can be quantified by the maximum depth she must swim to open all
gates. Clearly, Lotte cannot avoid swimming in the water depth that eventually arises when
all chambers are connected. But can she avoid swimming in any deeper water?

As an example, consider the first sample case, visualized in Figure L.1. When connecting
chambers in the order given by the sample answer, Lotte will never swim in any water that is
deeper than the final water level.

Help Lotte determine the order in which to connect the chambers to open all gates without
exceeding the final water depth, or determine that it is impossible.

Figure L.1: Visualization of the first sample case. The horizontal dashed line indicates the final water
level. Lotte can connect all chambers without swimming in any water that is deeper than this level.



26 Problem L: Levelling Locks

Input

The input consists of:

• One line with an integer n (2 ≤ n ≤ 2 · 105), the number of chambers.

• One line with n integers a (1 ≤ a ≤ 108), the water level in each chamber.

The space occupied by the gates is negligibly small.

Output

If it is possible to open all gates without exceeding the final water depth, output the order
in which Lotte first enters, thus connects, each of the n chambers. Otherwise, output
“impossible”.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
5
3 1 1 3 2

2 3 4 5 1

Sample Input 2 Sample Output 2
3
1 2 1

impossible



Problem M: Museum Visit 27

M Museum Visit Time limit: 4s

The Groninger Museum, as seen
from the canals. CC BY-SA 4.0 by

Rob Koster on Wikimedia Commons

Every day is different in the Groninger Museum. Some days are
nice, peaceful and quiet, and you can spend all day looking at the
beautiful paintings, sculptures, and other artworks. Other days
are busier, when weekends or public holidays fill the museum
with hasty visitors, increased prices and screaming children.
This discomfort varies a lot: some busy days are better because
of extra studentenkorting (student discount) and some of the
quiet days get worse because of earthquake risks.

The museum also regularly hosts special limited-time exhibitions,
such as those on the local football club FC Groningen, the Martinitoren, or the eierbal (a local
delicacy). These exhibitions can be very irregular: some last for weeks, some last only a day,
and there may be multiple exhibitions on the same day.

As a proud Grunneger, you want to visit each exhibition at least once. Luckily, you are
subscribed to the newsletter so you know the start and end days of all the exhibitions in
advance. Additionally, since you are a regular visitor at the museum, you have observed all
the crowd and earthquake patterns, so you know exactly how much discomfort you will receive
when you visit the museum on any specific day.

On which days should you visit the museum in order to minimize your total discomfort
while still seeing all exhibitions that are planned in the foreseeable future? As an example,
consider the first sample case. To minimize your total discomfort, you should visit the first
two exhibitions on the second day and the last exhibition on the fourth or fifth day.

Input

The input consists of:

• One line with two integers n and m (1 ≤ n, m ≤ 2 · 105), the number of days in the
foreseeable future and the number of exhibitions planned in those days.

• One line with n integers c (1 ≤ c ≤ 109), describing for each day the discomfort you will
receive when you visit the museum.

• m lines, each with two integers s and e (1 ≤ s ≤ e ≤ n), describing the start and end
day of an exhibition. The start and end days are inclusive: the exhibition can be visited
on day s, day e, and any day in between.

Output

Output the minimum total discomfort you will receive when visiting all exhibitions of the
Groninger Museum.

https://commons.wikimedia.org/wiki/File:Groningermuseum.JPG


28 Problem M: Museum Visit

Sample Input 1 Sample Output 1
5 3
1 1 3 1 1
1 3
2 3
3 5

2

Sample Input 2 Sample Output 2
6 3
1 2 4 4 2 1
1 4
2 5
3 6

3

Sample Input 3 Sample Output 3
11 2
3 1 4 1 5 9 2 6 5 3 5
5 10
1 1

5




	Problems
	“Aaawww...” or “Aaayyy!!!”
	Buggy Blinkers
	Concurrent Contests
	Disgruntled Diner
	Extraterrestrial Exploration
	Failing Factory
	Grocery Greed
	Horse Habitat
	Interrail Pass
	Jumbled Scoreboards
	Karaoke Compression
	Levelling Locks
	Museum Visit


